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Abstract

The onset of convection in a horizontal porous cavity with regard to the density maximum of water at 3.988C is

studied using a linear stability analysis. In the formulation of the problem use is made of the Brinkman-extended
Darcy model which is relevant to sparsely packed porous media. A parabolic density-temperature relationship is
used to model the e�ect of density inversion. The perturbation equations are solved with the aid of the Galerkin
and ®nite element methods. The onset of motion is found to be dependent of the aspect ratio A of the cavity, the

Darcy number Da, the inversion parameter g and the hydrodynamic boundary conditions applied on the horizontal
walls of the porous layer. The results for a viscous ¯uid (Da 41) and the Darcy porous medium (Da 4 0) emerge
from the present analysis as limiting cases. Numerical results for ®nite amplitude convection, obtained by solving

the full governing equations, indicate that subcritical convection is possible when the upper stable layer extends over
more than the half depth. Also, the existence of multiple solutions for a given range of governing parameters is
demonstrated. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Starting with the early works of Horton and Rogers

[1] and Lapwood [2], the problem of the onset of con-

vection in a horizontal ¯uid-saturated porous layer

heated from below has been a major topic of porous

media research in recent years. So far, most of the

studies are concerned with ¯uids having a linear re-

lationship between density and temperature. The state

of the art has been summarized in a recent book by

Nield and Bejan [3]. Convection in cold water, how-

ever, behaves in a complicated manner when the tem-

perature domain encompasses the 48C, point at which
the density of water reaches a maximum value. In gen-

eral, other ¯uids such as gallium, tellurium, antimony

and molten bismuth possess a density extremum in the

density±temperature relationship. However, among

those ¯uids cold water, one of the common ¯uids

occurring in nature, is the most important.

Relatively few studies have been concerned with the

problem of the onset of convection in a horizontal

porous layer saturated with cold water. Using a cubic

density-temperature relationship, Sun et al. [5] were the

®rst to establish the criterion for the onset of convec-

tion. The e�ects of density inversion on free convective

heat transfer in a porous medium heated from below

has been investigated experimentally by Yen [5]. The

onset of convection was found to be dependent on two

thermal parameters which are functions of the bound-

ary temperatures and the coe�cients representing the

¯uid density-temperature relationship. The linear stab-

ility predictions made by Sun et al. [4] were veri®ed nu-

merically by Blake et al. [6]. The e�ect of the Rayleigh
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number, for ®nite amplitude convection, on the overall

heat transfer rate through the layer was also documen-

ted by these authors. The onset of thermal instabilities
in the vicinity of the density maximum in the presence

of a time-dependent nonlinear mean temperature distri-

bution has been investigated by Poulikakos [7]. More
recently, Zhang [8] investigated numerically the prob-

lem of penetrative convection within a horizontal

porous layer saturated with cold water. The critical
Rayleigh and wave numbers were predicted numeri-

cally on the basis of a linear stability theory.

Computations, for ®nite amplitude convection, indicate
the existence of subcritical convection. In all the above

studies the porous medium is modeled according to

Darcy's law. This is found to give satisfactory results

when the porous medium is closely packed and with
low porosity.

The objective of the present study, based on the lin-

ear stability analysis, is to extend the results in Refs.
[4] and [7] for the case of sparsely packed porous

media. In the formulation of the model, use is made of

the Brinkman-extended Darcy formulation [9]. A para-
bolic density-temperature relationship is used to model

the e�ect of density inversion. The predicted critical

Rayleigh numbers bridge the gap between viscous ¯uid
and low permeability porous medium.

Nomenclature

A aspect ratio, W '/H '
AC wavelength associated to RC

Da Darcy number, K/H '2

g acceleration due to gravity
h 'm height of the unstable layer
h 'p height (penetration) of the convective layer

H ' overall height of the layer
k thermal conductivity of the saturated por-

ous medium

K permeability of the porous medium
Nu Nusselt number, Eq. (42)
R Darcy±Rayleigh number, gbKDT '2H '/an
Ra ¯uid Rayleigh number, gbDT '2H '3/an
RC critical Darcy±Rayleigh number
R0 ratio, R/RC

T dimensionless temperature, (T 'ÿT 'L)/DT '
T 'L temperature of the lower boundary
T 'U temperature of the upper boundary

T 'm temperature of maximum density
DT ' characteristic temperature di�erence,

T 'UÿT 'L
t dimensionless time, st 'a/H '2

W ' width of the porous layer
x, y dimensionless coordinate system, (x '/H ',

y '/H ')

Greek symbols
a thermal di�usivity, k/(r0C )f
g inversion parameter, 2(T 'mÿT 'L)/(T 'UÿT 'L)
b coe�cient, Eq. (1), 8Cÿ2

d coe�cient, Eq. (1), 8Cÿ3

n kinematic viscosity of ¯uid

r density of ¯uid
(r0C )f heat capacity of ¯uid
C stream function, C'/a

Fig. 1. Geometry of the physical problem.
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2. Problem description and mathematical model

The physical system of interest is the two-dimen-
sional enclosure shown in Fig. 1. The system is ®lled
with a water saturated porous medium. The

Brinkman-extended Darcy model, which is relevant to
sparsely packed porous media, is used in the present
study. The ¯ow in the enclosure is assumed laminar

and the dissipation e�ects are neglected. Also, the
water is modeled as a Boussinesq-incompressible ¯uid
whose physical properties are constant except the den-

sity, in the buoyancy force, which may be considered
to vary with the temperature according to the cubic re-
lationship [4]

r � rm�1ÿ b�T 0 ÿ T 0m�2 ÿ d�T 0 ÿ T 0m�3� �1�

with T 'm being the temperature at which the maximum
density rm is obtained.

In above equation, the values T 'm=3.988C,
b=7.94 � 10ÿ6 8Cÿ2 and d=ÿ6.56 � 10ÿ8 8Cÿ3 stand
for pure water. The resulting relation was found to be

valid in the range 0±308C [10].
The ¯ow and the heat transfer inside the enclosure

are governed by the continuity, momentum and energy

conservation equations. They are stated by

r ~V 0 � 0 �2�

~V
0 � K

m
�ÿrP 0 � meffr2 ~V

0 � r~g� �3�

s
@T 0

@ t 0
� ~V

0 � rT 0 � k

�r0C �f
r2T 0 �4�

where K is the permeability of the porous matrix, ~V
0
is

the mass-averaged velocity, ~g is the gravity vector and

(r0C )f is the heat capacity of ¯uid with reference den-
sity r0.
In the present problem, the unknown variables are

the velocity components (u ', v '), pressure P ' and tem-
perature T '. It is convenient to introduce the stream
function C' de®ned by

u 0 � @C 0

@y 0
, v 0 � ÿ@C

0

@x 0
�5�

such that the continuity Eq. (2) is automatically satis-

®ed.
Upon introducing the above equation and taking the

curl of the momentum equation, one obtains

r2C � rmDar 4Cÿ RF�T �@T
@x

�6�

In the above equation, the viscosity ratio rm=me�/m is

in general made equal to unity (see, for instance, Nield
and Bejan [3]).

The dimensionless energy equation takes the follow-
ing form

@T

@ t
ÿJ�C, T � � r2T �7�

The operators F and J are expressed as follows

F�T � �
�
ÿ g

�
1� 3

4
yg

�
� 2

�
1� 3

2
yg

�
Tÿ 3yT 2

�

J�C, T � � @C
@x

@T

@y
ÿ @C
@y

@T

@x
�8�

where g and y are de®ned as

g � 2
T 0m ÿ T 0L

DT 0
, y � d

b
DT 0, DT 0 � T 0U ÿ T 0L �9�

The above dimensionless governing equations have
been obtained by introducing the following dimension-
less variables:

�x, y� �
�
x 0

H 0 ,
y 0

H 0

�
, ~V �

~V
0
H 0

a
, t � t 0sa

H 02
,

T � �T
0 ÿ T 0L�
DT 0

�10�

The governing Eqs. (6) and (7) contain ®ve dimension-
less governing parameters, namely the Darcy±Rayleigh
number, R, the Darcy number, Da, the aspect ratio of
the enclosure, A, and the parameters, g and y. The par-

ameters R, Da and A are de®ned as

R � gKbDT 02H 0

an
, Da � K

H 02
, A � W 0

H 0 �11�

In the past, Moore and Weiss [10] and Musman [11]

have used a dimensionless Rayleigh number based on
the depth of the unstable layer h 'm and on the di�er-
ence in density across the unstable layer. Thus, with

the following relationships

0<g<2: h 0m � H 0
�
g
2

�
, DT 0m � DT 0

�
g
2

�

gr2: h 0m � H 0, D T 0m � DT 0 �12�

we de®ne the modi®ed Rayleigh and Darcy numbers
and the modi®ed aspect ratio as
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0<g<2: Rm � R

�
g
2

�3

, Dam � Da

�
2

g

�2

,

Am � A

�
2

g

�

gr2: Rm � R�gÿ 1�, Dam � Da, Am � A �13�
The hydrodynamic boundary conditions on all the

solid boundaries are expressed by

C � @C
@n
� 0 �14�

where n is the normal direction with respect to the
boundaries. For a free boundary, the hydrodynamic
boundary conditions are

C � @ 2C
@n2
� 0 �15�

In this study the hydrodynamic boundary condition

applied on the lower and the upper horizontal walls of
the cavity are rigid-rigid, free-free and rigid-free. In the
following text, the abbreviations RR, FF and RF will

be used to represent these three types of boundary con-
ditions.
The thermal boundary conditions are given by

x �2
A

2
:
@T

@x
� 0 and y �2

1

2
: T � 1, 0 �16�

For the in®nite slender enclosure (A41), in which
the ¯ow structure reveals periodical counterrotating
cells, periodic boundary conditions in x-direction
(j(x, y )=j(x+AC, y ), where j stands for C and T

and AC is the wavelength) are considered.
The Brinkman model described above represents an

intermediate case between the clear ¯uid and the

Darcy model (see, for instance, Vasseur and Robillard,
[12]). The transition from one to the other is obtained
by decreasing Da from in®nity to zero. In practice, the

value Da= 10 is considered in the present work to
represent very closely the ¯uid behavior. Conversely,
the Darcy behavior is assumed to be practically
reached at Da = 10ÿ6.

3. Linear stability analysis

In this section a marginal linear stability analysis is
used to predict the critical Rayleigh number for the
onset of convection. As usual, we introduce the follow-

ing transformation

C�x, y� � CR � c�x, y�

T�x, y� � TR � f�x, y� �17�

where CR=0 and TR=y + 1/2 correspond to the rest
state and c(x, y ) and f(x, y ) are the perturbed sol-

ution resulting from the convective e�ects.
Assuming separability, the steady perturbed solution

can be written as follows

c�x, y� � c0F�x, y� and f�x, y� � f0G�x, y� �18�

where the amplitudes c0 and f0 are small constants.

Substituting the rest-state solution and the small per-
turbations, Eqs. (17) and (18), into the governing Eqs.
(6) and (7) and discarding the second order terms
involving the perturbations (at the beginning of con-

vection, the amplitudes c0 and f0 are close to zero),
the following linearized set of governing equations is
obtained

c0r2F � Dac0r4Fÿ Rf �y�f0

@G

@x
�19�

ÿc0

@F

@x
� f0r2G �20�

where f( y ) is a quadratic function of y:

f �y� � 1ÿ g
4
�4ÿ 3y�1ÿ g�� � �2ÿ 3y�1ÿ g��y

ÿ 3yy2 �21�

The boundary conditions for the function F(x, y ) are
similar to those of C(x, y ) depicted in Eqs. (14) and
(15). However, the boundary condition for G(x, y ) are

x �2
A

2
:
@G

@x
� 0 and y �2

1

2
: G � 0 �22�

The above linear governing equations can be solved
numerically using the ®nite element method. To this

end, we introduce the Galerkin method to turn the lin-
ear equations into the weak formulation. Multiplying
Eq. (19) by w(x, y ) and Eq. (20) by W(x, y ), integrating
using the Green's theorem, we obtain

c0

�
O
rFrw dO� c0Da

�
O
r2Fr2w dO

� f0R

�
O
f �y�@G

@x
w dO 8w 2 H2�O�

�23�

ÿc0

�
O

@F

@x
W dO � ÿf0

�
O
rGrW dO� f0

�
G

@G

@n

W dG 8W 2 H2�O�
�24�

where w(x, y ) and W(x, y ) are arbitrary test functions
and H2(O) is the Hilbert space having square inte-
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grable functions including their ®rst and second deriva-
tives.

The ®nite element method is employed to solve the
above set of equations. The solution domain is ®rst
discretized into ®nite elements Oe such that O=
[ ne

i=1O
e, where ne is the number of elements. With

the stream function formulation, the maximum order
of the linear partial di�erential equations is four. For

this reason a rectangular Hermite cubic element of
high precision has been chosen. The degrees of free-
dom at each node involve the value of the function, its

two ®rst derivatives and its cross derivative.

3.1. Con®ned enclosure

Within each element, the functions F(x, y ) and
G(x, y ) are expressed in the general form

�
F�x, y�
G�x, y�

�
�
X4
j�1

266664
Fj

@Fj

@x

@Fj

@y

@ 2Fj

@x@y

Gj
@Gj

@x

@Gj

@y

@ 2Gj

@x@y

377775
e

8>><>>:
Nj�x, y�

Nj�4�x, y�
Nj�8�x, y�
Nj�12�x, y�

9>>=>>; �25�

where Nj (x, y ) are the Hermite interpolation func-
tions.

Using the approximation (25) and choosing the in-
terpolation functions Ni (x, y ) as the weighted func-
tions, after assembling in terms of global matrices and

solutions vectors {F } and {G }, Eqs. (23) and (24)
reduce to the following discretized set of linear
equations

c0�Kc�fF g � Rf0�B �fG g �26�

c0�L�fF g � f0�K �fG g �27�

where [B ], [Kc], [K ] and [L ] are m � m square

matrices, where m = 4Nn and Nn is the total nodes
number de®ned as Nn=(Nex+1)(Ney + 1) in which Nex

and Ney are the number of elements in x- and y-direc-
tions, respectively. The corresponding elementary

matrices can be computed from the following integrals

�B �e �
�
Oe

f �y�@Nj

@x
Ni dO,

�K �e �
�
Oe

rNj � rNi dO

�L�e �
�
Oe

@Nj

@x
Ni dO,

�Kc�e �
�
Oe

�rNj � rNi �Da r2Nj � r2Ni �dO �28�

and {F } and {G } are solution vectors of length m.

It is noted that the boundary integrals, known as the
natural boundary conditions, vanish for the hom-
ogenous Dirichlet and Neumann boundary conditions.
Substituting Eq. (27) into (26), we obtain the follow-

ing eigenvalue problem equation

c0��E � ÿ l�I ��fF g � 0

�E � � �Kc�ÿ1�B ��K �ÿ1�L� �29�

where [I ] is the identity matrix, l=1/R represents the
eigenvalue and {F } the eigenvector.
From a mathematical point of view, Eq. (29) has a

non-trivial solution ({F }=0) if and only if the determi-
nant of [EÿlI ] is equal to zero. This leads to the com-
putation of all the eigenvalues, li (i= 1, m ) of the

matrix [E ] by using for instance, the subroutine
(DE2CRG) of the IMSL library. In general, li are
complex numbers. For the present case, they are real

and can be rearranged as l1 R l2 R . . . R lm ÿ 1 R lm.
According to the inversion parameters values g and y,
the values of li can be positive or negative. From Eq.

(29), it is seen that positive values correspond to R>0
and negative values to R < 0 (reverse gravity)), those
negative values being irrelevant. Thus, the critical
Rayleigh number for the onset of convection is given

by

RC � 1

lm
: �30�

The precision of the present numerical procedure
depends, naturally, on the grid numbers. The ¯uid that

saturates the porous matrix is a standard Boussinesq
incompressible ¯uid whose density variation can be
expressed as a linear equation of state. With the

present mathematical model, this behavior can be
obtained for g 41 (in practice, g0104). Darcy num-
ber values of 10ÿ6 and 103 are chosen to model the
pure Darcy porous medium and the ¯uid medium (RR

boundaries), respectively. For the Darcy medium the
linear Rayleigh number RmC=4p 2=39.478 has been
predicted analytically in the past by Horton and

Rogers [1] and Lapwood [2], on the basis of the linear
stability theory. The value RamC=2585.03 has been
obtained numerically by Platten and Legros [13] for

the ¯uid medium with rigid-rigid boundaries. In the
present work, using di�erent grid sizes (Nex � Ney)
4 � 4, 8 � 8 and 16 � 16 the values of the critical
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Rayleigh number for the case of clear ¯uid are

2596.72, 2585.92 and 2585.13, respectively, and those
of the pure Darcy case are 39.480, 39.479 and 39.479.

Based on the results, it is clear that a grid size of 8 � 8

or more is su�cient to model accurately the problem.
In the present study, depending on the value of g, a

grid size of 10 � 10 to 20 � 20 is considered for a
square enclosure.

The di�erences between a parabolic and a cubic re-

lation for predicting the density-temperature behavior
of water, around the maximum density region, will be

now discussed. The e�ect of the inversion parameter y
(see Eq. (9)) on the critical Rayleigh number has been
studied for a square cavity with RR boundaries, for

g=1 and Dam=4 � 10ÿ2. The case g=1 for which the
maximum density is located at mid height of the en-

closure, corresponds to the existence of a stable layer
in the upper half of the cavity and an unstable layer in

the lower one. The cases y=0 and y di�erent from

zero correspond to parabolic and cubic density-tem-
perature relationships, respectively. The results indicate

that upon increasing y from 0 to 10ÿ1, the critical
Rayleigh number increases from 72.804 to 76.216

which corresponds to a maximum variation of 4.7%.

The di�erence between values of the critical Rayleigh
number, calculated from parabolic or cubic relation-

ships, for the temperature range of interest in this
study (0±88C) is found to be very small. For this

reason, a parabolic equation of state (y=0) will be

used in this study for its simplicity.
Using the parabolic state equation for clear ¯uid

with RR boundaries and pure Darcy medium for the

case of a square cavity with g=1 gives RamC=787.4
and RmC=31.49. The corresponding ¯ow patterns at

the onset of convection are presented in Fig. 2. They
di�er by the number of convective cells (one for the

¯uid case and two for the Darcy one). Both are
characterized by a weak circulation at the top of the

cavity. It is clear from Fig. 2 that the induced convec-

tive cell is not limited to the thickness of the unstable
layer but penetrates considerably inside the stable layer

Fig. 2. Incipient ¯ow patterns for a square enclosure with

g=1: (a) clear ¯uid with RR boundaries (RamC=787.4); (b)

pure Darcy medium (RmC=31.4).

Fig. 3. E�ect of the aspect ratio Am and inversion parameter

g on the critical Rayleigh number, RmC: (a) clear ¯uid with

RR boundaries; (b) Brinkman medium with Dam=10ÿ2 and

RR boundaries; (c) pure Darcy medium.
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with the maximum penetration for the ¯uid case. Thus
with Rm increased beyond the threshold, the initial

motion induces a mixing between ¯uid layers on each

side of the maximum density with the result that the

unstable layer is enlarged.

The e�ect of the aspect ratio, Am, on the critical

Rayleigh number is shown in Fig. 3(a)±(c) for the clear

¯uid, an intermediate case (Dam=10ÿ2) and the pure

Darcy medium. It can be seen on each graph that RmC

undergoes an irregular variation passing through maxi-

mums and minimums, when increasing the aspect ratio

Am. Each peak indicates that the number of convective

cells is increased by one. As the aspect ratio increases

towards large values, RmC tends asymptotically
towards the constant value corresponding to a layer of

in®nite extent. Furthermore, it is observed that results

for the ¯uid medium, Fig. 3(a), fall on a single curve

for g>2. This is not quite the same for the Darcy

medium, Fig. 3(c), where nearly spaced but distinct

curves are shown for g=2 and g=103. Nevertheless,

the upper curve in each of the three graphs represents
an asymptotic behavior for large g. The same is true
for the lower curve which represents all the cases
within the range 0 < g < 1. The fact that the upper

and lower curves in each of these graphs are asympto-
tic limits for g>2 and g < 1, respectively, results from
the present normalization of A and Da

3.2. In®nite horizontal enclosure

For this situation the perturbed solution can be writ-
ten as follows

c�x, y� � c0 sin o xF� y�

f�x, y� � f0 cos ox G� y� �31�

where o is the wavenumber de®ned as o=2p/AC and
AC is the critical wavelength.
Substituting (17) and (31) into the governing Eqs.

Fig. 4. E�ect of the inversion parameter g on the critical Rayleigh number RmC in a layer of in®nite lateral extent: (a) clear ¯uid

with RR boundaries; (b) Brinkman medium with Dam=10ÿ1 and RR boundaries; (c) pure Darcy medium; (d) corresponding criti-

cal wavelength AmC.
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(6) and (7) and discarding the second order terms, the
linearized governing equations are obtained as follows

c0

 
d2F

dy2
ÿ o 2F

!

� Da c0

 
d4F

dy4
ÿ 2o 2 d2F

dy2
� o 4F

!
ÿ oRf �y�f0G �32�

oc0F � ÿf0

 
d2G

dy2
ÿ o 2G

!
�33�

where f ( y ) is de®ned by (21).
Following the numerical procedure described above

for the case of a con®ned enclosure, the discretization

of Eqs. (32) and (33) yields matrix systems similar to
those given by Eqs. (26) and (27). For the present case,
the elementary matrices are de®ned now as

�B �e �
�
Dye

o f �y�NjNi dy,

�K �e �
�
Dye

�
dNj

dy

dNi

dy
� o 2NjNi

�
dy,

�L�e �
�
Dye

oNjNi dy

�Kc�e �
�
Dye

 
Da

d2Nj

dy2
d2Ni

dy2
� �1� 2Dao 2�

dNj

dy

dNi

dy
� o 2�1�Dao 2�NjNi

!
dy

�34�

{F } and {G } are solution vectors of length
my=4(Ney+1) and Dy e is the ®nite element length.

The above matrix system can be combined to yield
an eigenvalue problem similar to that given by Eq.
(29). For a given set of the governing parameters Da

and g, the critical Rayleigh number RC is computed
for di�erent values of the enclosure aspect ratio A.
The minimum value of RC and the corresponding
aspect ratio AC give the critical Rayleigh number for

the onset of convection and the critical wavenumber of
the convective rolls, respectively.
To validate our numerical code, we have considered

the classical BeÂ nard problem for an in®nite horizontal
porous layer. The case of a pure Darcy medium
(Da4 0) was considered ®rst. Using the values

Dam=10ÿ6 and g=104, the computed critical Darcy
Rayleigh number, RmC, and the corresponding wave-
length (o=2p/AmC) with 40 elements in y-direction are

given by 39.483 and 3.142, respectively, in agreement

with the values RmC=4p 2 and o=p predicted analyti-

cally (Refs. [1,2]), on the basis of the linear stability

analysis. Similarly, using the values Da= 103 and

g=104 the critical Rayleigh number and the corre-

sponding wavenumber for a pure ¯uid were obtained

as RamC=1707.807 and o=2p/AmC=3.116 in agree-

ment with the results obtained by Chandrasekhar [14].

Fig. 4 shows the critical Rayleigh number RmC and

the corresponding wavelength AmC for an in®nite

layer, with RR boundaries, as functions of the inver-

sion parameter g. Three cases, namely the ¯uid

Fig. 5. E�ect of the Darcy number Dam and of the inversion

parameter g in a layer of in®nite lateral extent with RR

boundaries: (a) critical Rayleigh number RmC; (b) correspond-

ing wavelength AmC.
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medium, Fig. 4(a), an intermediate case (Dam=10ÿ1),
Fig. 4(b), with RR boundaries and the pure Darcy

medium, Fig. 4(c), are considered. The limiting values

g41 and g 4 0 correspond, respectively, to the lin-

ear relationship r vs T and to a stable layer of a very

large thickness. Thus for g41, we obtain the limit-

ing values reported by Refs. [1,2,14] for the pure
Darcy and the ¯uid medium, respectively. For the

other limit g4 0, we obtain RamC=589.310 for the

¯uid medium and RmC=29.501 for the Darcy medium.

Fig. 4(d) shows the corresponding wavelengths. Upon

decreasing g from 1 to 2, RmC remains almost
unchanged for the curves of Fig. 4(a) and (b).

However there is a noticeable decrease for the Darcy

medium, Fig. 4(c) and this behavior explains why the

g=2 curve on Fig. 3(c) does not reach the asymptotic

curve for large g. For the range gr2, the unstable

layer occupies the whole depth and the nonlinearity r
vs T has little e�ect on the system. At g=2, however,

all curves show a drastic change with RmC starting to

decrease rather abruptly. That change is related to the

appearance of a stable layer near the top boundary.

With g decreasing further, a minimum is reached, fol-

lowed by a slight increase to a ®nal level. The curves

of Fig. 4(d) giving the critical wavelength follow a

reverse trend. The above results are similar to those

reported by Musman [11] for the case of FF bound-

aries.

Fig. 5(a) and (b) shows the critical Rayleigh number,

RmC and associated critical wavelength, AmC, respect-

ively, as functions of the Darcy number, Dam, for a

layer with RR boundaries. It can be noticed on Fig.

5(a) that RmC increases at ®rst slowly with Da increas-

ing from 10ÿ5 to 10ÿ2; the change in RmC becomes

more important with Dam increased further. The

asymptotic values of a porous medium are obtained

with Da 4 0 and those of a ¯uid with RamC=RmC/

Dam are reached when Dam 41. Fig. 5(b) shows the

variation of AmC with Dam. For g R 1, AmC is

observed to increase with Dam. However, for gr2, the

wavelength decreases slightly, passing through a mini-

mum at Dam25 � 10ÿ3, then increases towards

asymptotic value.

Four sets of incipient ¯ow ®elds for a layer of in®-

nite extent, are shown in Fig. 6. One corresponds

to the Darcy limit (Dam<<1) and the three others, to

¯uid limit (Dam>>1) with RR, RF and FF boundaries.

All those incipient ®elds are eigenvectors {c } associ-

ated to the critical Rayleigh numbers, as obtained for

g=1, value at which the maximum density in pure

conduction is at mid-height of the enclosure. One can

note that every ¯ow ®eld represented in that ®gure

penetrates into the stable layer (hp>hm=0.5, with hp
de®ned in Fig. 6(a) with the greatest penetration for

the ¯uid layer. Among the three di�erent ¯ow ®elds

corresponding to the ¯uid limit, the one with FF

boundaries has the maximum penetration. Changing

the upper boundary condition from rigid (RR) to free

(RF) has little e�ect on the threshold for this value

of g, the velocity being very weak near that boundary.

In each ¯ow pattern, the weak circulation observed

in the stable region is induced by the main ¯ow cells

generated in the unstable region. As mentioned earlier,

the incipient penetration (penetration at incipient con-

vection) is responsible for the existence of subcritical

motion and the range of subcritical motion should

be particularly important for the ¯uid medium

with FF boundaries since it has the maximum pen-

etration.

Fig. 6. E�ect of the Darcy number Dam on the incipient ¯ow

®eld in a layer of in®nite lateral extent with g=1: (a) pure

Darcy medium (RmC=29.46; AmC=2.688); (b) clear ¯uid with

RR boundaries, (RmC=583.31; AmC=3.140); (c) clear ¯uid

with RF boundaries (RmC=593.06; AmC=3.074), (d) clear

¯uid with FF boundaries (RmC=265.60; AmC=4.149).
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4. Finite amplitude convection

4.1. Numerical approach

The full set of governing Eqs. (6) and (7) has been

solved numerically, for the pure Darcy limit
(Dam 4 0), using a ®nite element method based on the
nine-noded Lagrangian cubic element. In the energy

equation, the term involving temporal derivative is dis-
cretized using second-order backward ®nite di�erence
schemes. For spatial discretization, the physical

domain is divided into rectangular elements known as
the nine-noded Lagrangian cubic elements, with non-
uniform grid. In each element, the unknown pro®les of
C(x, y ) and T(x, y ) are expressed as

�
C�x, y�
T�x, y�

�
�
X9
j�1

Nj�x, y�
�
Ce

j

T e
j

�
�35�

where Nj (x, y ) are the Lagrangian shape functions
and Ce

j and T e
j are the elementary nodal values.

Using the Bubnov±Galerkin procedure with the fully
implicit scheme, the discretized governing equations,

after being assembled into global systems, are given in
terms of the following matrical systems

�KC�fCn
kg � RT�B �fT n

kÿ1g �36�

�
1

Dto
�M � ÿ �C � � �K �

�
fT n

kg �
1

Dto
�M �fT og �37�

where [B ], [C ], [KC], [K ] and [M ] are m � m global

matrices and m is the total node number in the calcu-
lus domain (m=(2Nex+1)(2Ney+1) where Nex and Ney

are the numbers of elements in x and y-direction);

T o=4Tk ÿ 1/3ÿTk ÿ 2/3 and Dt o=2Dt/3 (k, k ÿ 1 and
k ÿ 2 correspond to t, tÿDt and t ÿ 2Dt, respectively,
and Dt being the time step).
The elementary matrices are de®ned by

�B �e �
�
Oe

F�T n
k�
@Nj

@x
Ni dO,

�C �e �
�
Oe

J�Cn
k, Nj �Ni dO

�KC�e �
�
Oe

rNj � rNi dO

�K �e �
�
Oe

rNjrNi dO

�M �e �
�
Oe

NjNi dO �38�

To perform exactly the above integrals, four Gauss in-
tegration points are used for the matrix [B ]e and three

for the others.
At a given time step n and iteration k, the Darcy

and the energy Eqs. (36) and (37) are solved by evalu-

ating the temperature in the buoyancy term of Eq. (36)
and the stream function in the advective terms of Eq.
(37) with the previous results obtained at iteration

k ÿ 1. The convergence of the iterative procedure is
obtained when

Si j f ki ÿ f kÿ1i j
Si j f ki j

R10ÿ6 �39�

where f stands for C and T. In general, one to three
iterations were su�cient to achieve the convergence
criteria.
The linear system (36) is solved by the successive

over-relaxation method. On the other hand, the linear
system given by (37) is solved by an iterative procedure
using the pentadiagonal matrix algorithm (PDMA) by

transforming Eq. (37) as follows

�PD�fT kg � �PD�fT kÿ1g � z�fbg ÿ �E �fT kÿ1g� �40�
where [PD ] is the pentadiagonal matrix of [E ], z is the
under-relaxation coe�cient (0 < z < 1) and k denotes
iteration k. Here [E ] and {b } are given by

�E � �
�

1

Dto
�M � ÿ �C � � �K �

�
,

fbg � 1

Dto
�M �fT og

�41�

At each time step, the convergence criterion given by
Eq. (39) is used.

With the approach described above, a grid size from
20 � 20 to 50 � 20 elements was used, depending on
the parameter values R and g. For g R 1, a non uni-
form grid size was used in the vertical direction with

15 elements in the unstable region and 5 in the stable
one.

5. Results and discussion

All results shown in this part are limited to 1/
3 < g< 2 and to a square cavity (A= 1). According

to Moore and Weiss [10], stable subcritical convection
of ®nite amplitude will exist for the ¯uid limit provided
that g R 1.04. At g=1.04, the upper stable region oc-

cupies nearly half of the total depth. Computations
done with the present code indicate that this is also
roughly the case for a Darcy medium contained in a
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square cavity. Figs. 7±9 show the extremum values of
the stream function (Cext) and the Nusselt number

given as functions of the ratio R0=Rm/RmC for three
di�erent value of g(g=2, 1 and 1/3). The Nusselt num-
ber is de®ned as

Nu �
�1=2
ÿ1=2

@T

@y

����
y�21=2

dx �42�

Some ¯ow and temperature ®elds corresponding to
those speci®c values of g values are shown in the
®gures. For comparison, incipient ¯ow ®elds (eigenvec-

tors {c } as established by the linear stability

approach) are also given.

Fig. 7(a) and (b) illustrates a standard supercritical

bifurcation as it exists for the classical BeÂ nard prob-

lem. Any perturbation brought to the system at
R0 < 1 is resorbed. The ¯ow ®eld, Fig. 7(d), corre-

sponds to a Rayleigh number just above the critical

Rayleigh number R0=1.037 and is very similar to the

incipient ¯ow ®eld, Fig. 7(c). With R0 4 1, the ¯ow

®eld of Fig. 7(d) would evolve smoothly towards the

one of Fig. 7(c). One particular aspect of Fig. 7(d) is

the absence of symmetry with respect to the center.

Fig. 7. Finite amplitude convection at g=2 for a pure Darcy medium: (a) Cext function of R0; (b) Nu function of R0; (c) incipient

¯ow pattern and isotherms (RmC=38.55); (d) ¯ow pattern and isotherms at R0=1.04.
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This particularity, which is in contrast with standard

BeÂ nard convection, is attributed to the non linear

source term in the momentum equation. From a math-

ematical point of view, it can be easily demonstrated

that if C(x, y ) and T(x, y ) are a solution of the pre-

sent problem C(ÿx, ÿy )$C(x, y ) and 1ÿT(ÿx,
ÿy )$T(x, y ) since the density exhibits a quadratic

variation in temperature, T. Therefore, the solution for

®nite amplitude convection is not symmetric (this lack

of symmetry has already been noticed by Moore and

Weiss [10]).

For g=1/3, the resulting incipient ¯ow ®eld corre-

sponding to the critical Rayleigh number,

(RmC=29.78), contains ®ve cells. However, the ®nite

amplitude curve shown in Fig. 8(a) and (b) stands for

solutions having a four-cell ¯ow pattern and extends

below RmC (subcritical bifurcation). The ¯ow ®eld and

its corresponding temperature ®eld, obtained at R0=1,

are shown in Fig. 8(d). Although the solution is

obtained exactly at RmC, the isotherms are strongly

distorted, this behavior being typical of a subcritical

bifurcation. The path shown by arrows in Fig. 8(a) is

the one that can be followed to test the character of

the subcritical bifurcation and to obtain the curve

Fig. 8. Finite amplitude convection at g=1/3 for a pure Darcy medium: (a) Cext function of R0; (b) Nu function of R0; (c) incipient

¯ow pattern and isotherms (RmC=29.78); (d) and (e) ¯ow patterns and isotherms at R0=1 and R0=12.4, respectively.
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representing the locus of steady state solutions. One

starts at R0 < 1 with pure conduction (C=0 and

T=TR) as initial condition to which is superposed a
small perturbation. For all tests below R0=1, the per-

turbation is resorbed with time and the pure conduc-

tion recovered. At R0 barely larger than unity, any

small perturbation will bring the system to the ®nite

amplitude level of the curve. Using those new results
as initial conditions, one can get other results at neigh-

bouring points and repeat the procedure to obtain the

whole range 0.94 R R0 R 1.5.

For g=1/3, the pure conduction unstable layer has a

depth corresponding to (gH '/2). The incipient pen-

etration, Fig 8(c), already exceeds the depth of the un-

stable layer. One can notice that the actual penetration

of the ¯ow ®eld, Fig. 8(d), at R0=1 is even larger than

the incipient penetration. The temperature ®eld in Fig.
8(d) shows two distinct regions. The lower one is

characterized by convection and the upper one by pure

conduction with isotherms regularly spaced. A whole

family of solutions may thus be de®ned from the

actual one, by truncating or extending the pure con-

duction region, i.e. by changing the location of the

upper boundary and setting the appropriate boundary
temperature. The penetration observed in Fig. 8(d) is

ampli®ed with increasing Rayleigh number. Fig. 8(e) at

Fig. 9. Finite amplitude convection at g=1 for a pure Darcy medium: (a) Cext function of R0; (b) Nu function of R0; (c) and (d)

¯ow patterns and isotherms at R0=1.01 corresponding, respectively, to curves labeled 1 and 2.
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R0=12.4 shows a penetration that reaches 80% of the
total depth. At this level of convection the ¯ow pattern

contains eight convective cells. The multiplication of
cells with increasing R0 is a normal phenomenon
found in standard (r vs T ) linear convection with bot-

tom heating. However, the penetration e�ect is a
characteristic of convection involving a maximum den-
sity.

For g=1 (RmC=31.5), there are two solutions poss-
ible above RmC, as shown by the two curves of Fig.
9(a) and (b). One curve corresponds to the standard

BeÂ nard behavior (supercritical convection) with Cext

decreasing to zero as Rm approaches RmC from the
upper values. The other curve has a ®nite value of Cext

extending below RmC (subcritical convection) and a

Nusselt number above unity. The ®rst solution was
computed up to R0=1.5, by using the rest state as in-
itial condition. The second curve was initiated using a

unicellular ®nite amplitude ¯ow as initial condition at
a Rayleigh number above the critical value.
Subsequent results were obtained by using previous

results as initial values to extend the curve at lower
and higher Rayleigh numbers. With this procedure, it
was possible to obtain stable solutions for the narrow

range 0.97 R R0 R 1.1.
Fig. 9(c) and (d) are ¯ow and temperature ®elds cor-

responding to the ®rst and second types of solutions,
respectively, both at R0=1.01. The ¯ow ®eld illus-

trated in Fig. 9(c) is quite similar to the corresponding
incipient ¯ow ®eld shown in Fig. 2(b). It is very weak
and has little e�ect on the isotherms. The other ¯ow

®eld, Fig. 9(d), which contains one main cell, although
at R0=1.01, produces a more important distortion of
the isotherms. As a result, the heat transfer rate is

greater than unity in the neighbourhood of the bifur-
cation point (see the dotted curve in Fig. 9(b)). To the
authors' knowledge, the existence of such multiple sol-
utions for the case of convection in cold water has not

been reported yet.

6. Conclusions

A stability study has been performed for the case of

a horizontal Brinkman porous layer of ®nite/in®nite
lateral extent, saturated with water in the neighbour-
hood of 48C. Critical Rayleigh numbers have been

obtained as functions of the Darcy number, the aspect
ratio of the enclosure and the inversion parameter, this
last one de®ning the vertical position of the maximum
density with respect to the horizontal boundaries.

Results have been brought to a simple form by the use
of a particular de®nition for the Darcy number and
aspect ratio, based on the thickness of the unstable

layer in replacement of the total depth.
Finite amplitude computations for a Darcy medium

have revealed the existence of convective motion below
the threshold established by a linear stability analysis,

when g is smaller than unity. This type of behavior
which corresponds to subcritical bifurcation has
already been observed by Moore and Weiss [10] for

the ¯uid case.
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